Precision cosmology from BBN

Ofelia Pisanti Università di Napoli "Federico II" & INFN Napoli

mostly based on NAPhysRep: F. Iocco, G. Mangano, G. Miele, O.P., Phys. Rep. 472 (2009) 1

"Alternative Gravity and Alternative Matter" Workshop Heraklion, 20-23 May 2015

What is BBN?

Asking to Google (5 years ago)...

Answers

From the talk of G. Miele, PASCOS, Valencia, 2010

BBN Traditional Christian radio
 Cómo ir al Cielo (How to go to Heaven)

Very evocative!

As first item

"Big bang nucleosynthesis" listed by Google at the 4th page

PASCOS 2010, Valencia

4/40

What is BBN?

And today...

Technology *über alles*: Raytheon BBN Technologies BBN Radio now in 5th position: a more secular world... Publishing, business, social networking, game (Bubble Ninja!), finance...

Physics moved back, from 4th to 5th page!

a less successful BBN?

A very sensitive precision tool!

• One of the observational pillars of the hot Big Bang.

• One of the first direct probes of the universe history (few seconds after the bang).

• Involves all known interactions: gravitational for the expansion, weak for neutrino and nucleon decoupling, electromagnetic and strong for the nuclear reaction network. So, it is sensitive to a large spectrum of physics.

• Before WMAP: the best way for measuring the baryon fraction (overconstrained theory in its simplest scenario) and N_{eff}.

$$\eta_{B} = \frac{n_{B}}{n_{\gamma}} = 273.45 \cdot 10^{-10} \ \Omega_{B} h^{2} \qquad \rho_{R} = \rho_{\gamma} + \rho_{\nu} + \rho_{X} = \rho_{\gamma} \left(1 + \frac{7}{8} N_{eff} \left(\frac{4}{11} \right)^{4/3} \right)$$

• Today, after Planck, BBN is used as a precision tool (in combination with other cosmological information) to reduce the number of free parameters of SMC AND as a consistency tool for the SMC and SMPP: did you check your model against BBN?

BBN in few words

About 1 second after the bang, the plasma of γ , e⁻, v, n, p (and their antiparticles) reaches a temperature at which weak interactions of v and N goes out of equilibrium with respect to expansion.

Neutrinos decouple at T~1 MeV and their temperature decreases only due to the effect of the universe expansion, changing with respect to the photon temperature only after the e^+e^- annihilation stage.

n/p ratio (fortunately) freezes out just soon after neutrinos, at $T_D \sim 0.8$ MeV, becoming $\sim 1/7$; then, when a sufficient abundance of deuterium forms at $T_{BBN} \sim 0.1$ MeV (not so quickly, the deuterium *bottleneck*) the nuclear chain starts: (almost) all neutrons present at this moment go into ⁴He.

The final result is a universe made by 75% of hydrogen, 25% of 4He (and negligible yields of the other elements up to 7Li).

$$Y_{p} = \frac{4n_{4_{He}}}{n_{n} + n_{p}} = \frac{4\binom{n_{n}}{2}}{n_{n} + n_{p}} = \frac{2}{1 + \frac{n_{p}}{n_{n}}} = 0.25$$

BBN is a simple theory?

The equations of BBN

Not so simple after all...

$$\begin{split} &\frac{\dot{a}}{a} = H = \sqrt{\frac{8 \pi G_N}{3} \rho} \quad , \\ &\frac{\dot{n}_B}{n_B} = -3 H \quad , \\ &\dot{\rho} = -3 H (\rho + P) \quad , \\ &\dot{X}_i = \sum_{j,k,l} N_i \left(\Gamma_{kl \to ij} \frac{X_k^{N_k} X_l^{N_l}}{N_k! N_l!} - \Gamma_{ij \to kl} \frac{X_i^{N_i} X_j^{N_j}}{N_i! N_j!} \right) \equiv \Gamma_i \quad , \\ &n_B \sum_j Z_j X_j = n_{e^-} - n_{e^+} \equiv L \left(\frac{m_e}{T}, \phi_e \right) \equiv T^3 \hat{L} \left(\frac{m_e}{T}, \phi_e \right) \quad , \\ &\left(\frac{\partial}{\partial t} - H \left| \mathbf{p} \right| \frac{\partial}{\partial \left| \mathbf{p} \right|} \right) f_{\nu_\alpha}(\left| \mathbf{p} \right|, t) = I_{\nu_\alpha} \left[f_{\nu_e}, f_{\bar{\nu}_e}, f_{\nu_x}, f_{\bar{\nu}_x}, f_{e^-}, f_{e^+} \right] \end{split}$$

Ofelia Pisanti - Alternative Gravity and Alternative Matter Workshop, Heraklion, 20-23 May 2015

2

The equations of BBN

Not so simple after all...

Weak rates: radiative and finite nucleon mass corr., finite temperature corr., plasma effects

Boltzman equations for a large network of light nuclei abundances (uncertainties from experimental measures and theoretical calculations of reaction rates)

$$\begin{aligned} \frac{n_B}{n_B} &= -3 H \quad , \\ \dot{\rho} &= -3 H (\rho + P) \quad , \\ \dot{X}_i &= \sum_{j,k,l} N_i \left(\Gamma_{kl \to ij} \frac{X_k^{N_k} X_l^{N_l}}{N_k! N_l!} - \Gamma_{ij \to kl} \frac{X_i^{N_i} X_i^{N_j}}{N_i!} \right) \\ n_B \sum_j Z_j X_j &= n_{e^-} - n_{e^+} \equiv L \left(\frac{m_e}{T}, \phi_e \right) \equiv T \end{aligned} \qquad \begin{aligned} \text{Boltzman equations for neutrino distributions in non-instantaneous decoupling} \\ \left(\frac{\partial}{\partial t} - H \left| \mathbf{p} \right| \frac{\partial}{\partial \left| \mathbf{p} \right|} \right) f_{\nu_\alpha}(\left| \mathbf{p} \right|, t) = I_{\nu_\alpha} [f_{\nu_e}, f_{\bar{\nu}_e}, f_{\nu_x}, f_{\bar{\nu}_x}, f_{e^-}, f_{e^+}] \end{aligned}$$

BBN codes

R.V. Wagoner, Astrophys. J. Suppl. 18 (1969) 247; **R.V. Wagoner**, Astrophys. J. 179 (1973) 343.

L.H. Kawano, 1988. Preprint FERMILAB-Pub-88=34-A; L.H. Kawano, 1992. Preprint FERMILAB-Pub-92=04-A.

R.E. Lopez, M.S. Turner, Phys. Rev. D 59 (1999) 103502.

E. Lisi, S. Sarkar, F.L. Villante, Phys. Rev. D 59 (1999) 123520.

K.A. Olive, G. Steigman, T.P. Walker, Phys. Rep. 333334 (2000) 389.

S. Esposito, G. Mangano, G. Miele, O. P., JHEP 0009 (2000) 038; P.D. Serpico, et al., JCAP 0412 (2004) 010; O. P., et al., Comp. Phys. Comm. 178 (2008) 956; http://parthenope.na.infn.it

J. MacDonald, D.J. Mullan, Phys. Rev. D 80 (2009) 043507; http:// cococubed.asu.edu/code_pages/net_bigbang.shtml

Neutrinos (fixing the notations)

Until neutrinos are coupled (and after their decoupling, till electron-positron annihilation) they are described by an equilibrium FD distribution, which depends on their chemical potential, μ_{v} .

$$f_{eq}(p,T) = \frac{1}{e^{\frac{p-\mu_{v_i}}{T}}+1}$$

$$\xi_i \equiv \frac{\mu_{\nu_i}}{T}$$

degeneracy parameter, invariant under cosmic expansion

Chemical potentials contribute in increasing the energy density, so increasing the effective number of neutrinos.

$$N_{eff} = 3 + \sum_{i} \left(\frac{30\xi_i^2}{7\pi^2} + \frac{15\xi_i^4}{7\pi^4} \right)$$

It is customary to define neutrino asymmetries analogous to the baryon asymmetry.

asymmetry parameter, usually considered small, see in two slides

$$\eta_{\nu_i} = \frac{n_{\nu_i} - n_{\overline{\nu}_i}}{n_{\gamma}} = \frac{1}{12\,\zeta(3)} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^3 \left(\pi^2 \xi_i + \xi_i^3\right)$$

BBN accuracy (I): neutrinos

In the general picture of BBN, neutrinos enters as part of the radiation of the universe (expansion) and as participants in the weak rates that determine the n/p ratio (initial condition). But, accuracy requires to take into account:

- decoupling of neutrinos is not instantaneous
 → Boltzman equations
- neutrinos oscillate
 proper treatment of matter effect (pag. 144-145 NC)
- neutrinos can be not standard

 neutrino lepton numbers change the evolution and the weak rates

BBN accuracy (II): weak rates

Example of the issue: neutron decay. In the Born approximation the thermal averaged rate in the limit of vanishing densities is

$$\tau_n^{-1} = \frac{G_F^2(c_V^2 + 3c_A^2)}{2\pi^3} m_e^5 \int_{1}^{\Delta/m_e} d\varepsilon \, \varepsilon \left(\varepsilon - \frac{\Delta}{m_e}\right)^2 \left(\varepsilon^2 - 1\right)^{1/2}$$
S. Esposito, G. Mangano, G. Miele,
O. P., Nuc. Phys. B 540 (1999) 3

Corrections to the weak rates:

- radiative corrections O(α)
- finite nucleon mass corrections $O(T/m_N)$
- plasma effects (α T/m_e)

Weak rates are the main issue for calculating Y_p , and in this regard the main uncertainty is the experimental error in the neutron lifetime.

 $\tau_{n}(exp) = 880.3 \pm 1.1 s$

$$\begin{aligned} &\frac{^{2}\text{H}}{\text{H}} = 2.53 \times 10^{-5} R_{3}^{-0.55} R_{4}^{-0.45} R_{2}^{-0.32} R_{1}^{-0.20} \left(\frac{\omega_{b}}{0.02273}\right)^{-1.62} \left(\frac{\tau_{n}}{\tau_{n,0}}\right)^{0.41} \\ &\frac{^{3}\text{He}}{\text{H}} = 1.02 \times 10^{-5} R_{7}^{-0.77} R_{2}^{0.38} R_{4}^{-0.25} R_{3}^{-.20} R_{5}^{-0.17} R_{1}^{0.08} \left(\frac{\omega_{b}}{0.02273}\right)^{-0.59} \left(\frac{\tau_{n}}{\tau_{n,0}}\right)^{0.15} \\ &Y_{p} = 0.2480 R_{3}^{0.006} R_{4}^{0.005} R_{1}^{0.005} \left(\frac{\omega_{b}}{0.02273}\right)^{0.39} \left(\frac{\tau_{n}}{\tau_{n,0}}\right)^{0.72}, \\ &\frac{^{7}\text{Li}}{\text{H}} = 4.7 \times 10^{-10} R_{1}^{1.34} R_{8}^{0.96} R_{7}^{-0.76} R_{10}^{-0.71} R_{3}^{0.71} R_{2}^{0.59} R_{5}^{-0.27} \left(\frac{\omega_{b}}{0.02273}\right)^{2.12} \left(\frac{\tau_{n}}{\tau_{n,0}}\right)^{0.44} \end{aligned}$$

Ofelia Pisanti - Alternative Gravity and Alternative Matter Workshop, Heraklion, 20-23 May 2015

99) 3

BBN accuracy (III): nuclear network

The accuracy of the BBN nuclear network depends on the determination of several critical reactions. While in the past one could count only on experimental measures (not always in the relevant energy range for BBN, 30÷300 keV in the center of mass), recently theoretical calculations, at least for some reaction, become available.

- Dpγ. Major improvement: underground measurement (LUNA experiment).
- pnγ. A very accurate theoretical result using pion-less effective field theory:
 o.1% uncertainty on ²H/H (G. Rupak, Nucl. Phys. A 678 (2000) 409).
- ³H $\alpha\gamma$. Results from the ERNA experiment: but the ⁷Li problem is still there.

Abundances: how they go

• η_B : ²H and ⁷Li much more sensitive than ⁴He. More baryons imply a larger temperature at deuterium bottleneck and a more efficient burning \rightarrow less ²H and ³He and more ⁴He. ⁷Li production dominates for low η_B , while ⁷Be dominates at high η_B , leading to the characteristic "lithium dip" versus η_B in the Schramm plot.

Abundances: how they go

• η_B : ²H and ⁷Li much more sensitive than ⁴He. More baryons imply a larger temperature at deuterium bottleneck and a more efficient burning \rightarrow less ²H and ³He and more ⁴He. ⁷Li production dominates for low η_B , while ⁷Be dominates at high η_B , leading to the characteristic "lithium dip" versus η_B in the Schramm plot.

• N_{eff} : more relativistic degrees of freedom \rightarrow a faster expansion. Then an earlier freeze-out of n/p (more ⁴He) and less time available for ²H destruction (more ²H).

• τ_n : a decrease in $\Gamma \rightarrow$ an earlier freeze-out of n/p (more ⁴He) and more neutrons available (more ²H).

• ξ_{vi} : all flavours contribute to N_{eff} , giving a faster expansion \rightarrow more 4He. Only ξ_{ve} ξ_{ve} contribute to weak rates (a positive value \rightarrow more neutrinos \rightarrow less neutrons \rightarrow less 4He). The degeneracy can be understood in term of the initial condition on the n/p equilibrium value

on on the n/p equilibrium va

$$-\frac{Q}{T_p} - \xi_e = const$$

Data (the quest for "primordiality")

• ²H: it is only destroyed. Observation of Lyman absorption lines by neutral hydrogen (HI) gas clouds (Quasar Absorption Systems) at red-shift $z \approx 2 - 3$ placed along the line of sight of distant quasar.

• ³He: in stellar interior can be either produced by ²H-burning or destroyed in the hotter regions. It can be observed via a line accessible only within Milky Way. It is unclear why a correlation with the distance from the center of the galaxy (metallicity) is not observed.

• ⁴He: it is produced inside stars. Observation in ionized gas regions (HeII \rightarrow HeI recombination lines) in low metallicity environments (BCG or dwarf irregular), with O abundances 0.02 – 0.2 times those in the sun. Then, regression to zero metallicity. Large systematics (1% accuracy at best), but Planck precision allows interesting measure via ⁴He effect on anisotropy tail.

• 7Li: it is produced and destroyed. Observation of absorption lines in spectra of halo stars of POP II. All of them show very similar abundances of 7Li (Spite plateau) which should be close to the primordial value. The experimental value is a factor 2-3 below the BBN prediction. Attempts at solutions: nuclear rates, stellar depletion, new particles decaying at BBN, axion cooling, variation of fundamental constants.

 $^{2}\mathrm{H}$

• After a period with conflicting high and low measurements of ²H, data settled towards a value in reasonably agreement with the BBN prediction using η_B from CMB. However, their dispersion was an indication either of an underestimate of systematics or of large effects of the galactic evolution.

• The observation of an absorber at z=3.05 improved the accuracy (from 20% uncertainty to 2% uncertainty) giving ²H/H=(2.54±0.05)·10⁻⁵ (M. Pettini and R. Cooke, Mon. Not. Roy. Astron. Soc. 425 (2012) 2477).

• This, together with another precision observation at $z\sim3.07$, triggered a reanalysis of previous data. From a set of five absorbers it was determined

 $\frac{{}^{2}H}{H} = (2.53 \pm 0.04) \cdot 10^{-5}$

R. Cooke, M. Pettini, R.A. Jorgenson, M.T. Murphy, C.C. Steidel, Ap. J. 781 (2014) 31

• With this determination we get 1.6% uncertainty on ²H/H.

• A more recent measure ${}^{2}H/H=(2.45\pm0.28)\cdot10^{-5}$ at z=3.256 has a larger uncertainty and its inclusion in the set of previous data does not change the ${}^{2}H$ determination (S. Reimer-Sorensen et al. Mon. Not. Roy. Astron. Soc. 447 (2015) 2925).

• The theoretical model used for extracting the abundance contains 8 physical parameters (among which ⁴He abundance, electron density, optical depth, temperature, neutral H fraction). It allows to predict the fluxes of 6 He lines and 3 H lines (relative to Hβ).

4He

• After selection of data (6 He lines available, $\chi^2 < 4$, anomalous values) 14 objects remain, giving $Y_p=0.2534\pm0.0083$ (linear regression) or $Y_p=0.2574\pm0.0036$ (weighted mean) (E. Aver et al, JCAP 1204 (2012) 004).

• Using new treatment of emissivity, the same type of analysis gives $Y_p=0.2465\pm0.0097$ (linear regression) or $Y_p=0.2535\pm0.0036$ (weighted mean) (E. Aver et al, JCAP 1311 (2013) 017).

• More recently, a new line was included in the analysis, with the characteristic of a different dependence on density and temperature. This reduces the uncertainty (over a factor of 2) and leads to a better defined regression

$Y_p = 0.2449 \pm 0.0040$

E. Aver, K.A. Olive, E.D. Skillman, arXiv:1503.08146 [astro-ph.CO]

• 1.6% uncertainty, but systematics are underestimated, since most of the available data are not well fit by the model.

BBN analyses

- Choose the scenario, that is the parameters of your model: A, B,
- Run the BBN code and determine the theoretical abundances $X_i(A, B,...)$ with corresponding uncertaities $\sigma_i(A, B,...)$.
- Construct likelihood functions for your abundances:

$$L_{i}(N_{eff},\eta) = \frac{1}{2\pi\sigma_{i}^{th}(N_{eff},\eta)\sigma_{i}^{ex}} \int dx \exp\left(-\frac{(x-Y_{i}^{th}(N_{eff},\eta))^{2}}{2\sigma_{i}^{th}(N_{eff},\eta)^{2}}\right) \exp\left(-\frac{(x-Y_{i}^{ex})^{2}}{2\sigma_{i}^{2x}}\right)$$

• Determine confidence level contours from the complex term 2 H mainly fixes Ω_{B} h², ⁴He depends strongly on N_{eff}

BBN plus CMB analysis (I)

Since the first results from WMAP experiment, CMB gave a more precise determination of ²H with respect to BBN. Moreover, at present, measurements of the CMB damping tail at small angular scales (high l) probe both Y_p and N_{eff} .

- $N_{v}=3 (N_{eff}=3.046)$
- ²H and ⁴He BBN+CMB likelihoods (purple) perfectly consistent with observational ones (yellow)
 - ³He experimental measure missing
- 7Li likelihoods disjoint
- CMB-only prediction for Y_p (cyan) least precise, but consistent with the other
- the deuterium result shows a spectacular agreement among physics from z~3 (QSO), z~1000 (CMB), and z~10¹⁰ (BBN)!

BBN plus CMB analysis (I)

Since the first results from WMAP experiment, CMB gave a more precise determination of ²H with respect to BBN. Moreover, at present, measurements of the CMB damping tail at small angular scales (high l) probe both Y_p and N_{eff} .

BBN plus CMB analysis (II)

In the first two panels only one abundance is used (then narrowed by CMB), in the third both abundances.

- Y_p fixes N_{eff} , while ²H depends on both (but more sensitive to η_B)
- in the first two cases, CMB needed for closing the contours, in the third one it improves the determination

R.H. Cyburt, B.D. Fields, K.A. Olive, T. Yeh, arXiv:1505.01076 [astro-ph]

Ofelia Pisanti - Alternative Gravity and Alternative Matter Workshop, Heral

BBN plus CMB analysis (II)

In the first two panels only one abundance is used (then narrowed by CMB), in the third both abundances.

- Y_p fixes N_{eff} , while ²H depends on both (but more sensitive to η_B)
- in the first two cases, CMB needed for closing the contours, in the third one it improves the determination

Beyond the SMC

Non standard cosmological models typically "live" in very early epochs, shrouded by the optical depth of pre-recombination plasma. Then, they can be explored only indirectly, by the two best quantitative models we have of the early universe: BBN and CMB.

• BBN it is strongly sensitive to the expansion rate, given by the value of the Hubble parameter. At this regard, two physical quantities have to be under control: the number of degrees of freedom in the radiation density (N_{eff}) and the Planck mass (G_N) which, as a general feature of alternative cosmological models, emerges as an effective scale at low energy.

• ²H, ³He and ⁷Li are sensitive to the expansion rate AFTER the e⁺e⁻ annihilation stage, while ⁴He depends ALSO on the expansion rate before this stage (n/p ratio freeze-out).

• One needs to include in the analysis at least two different abundances, in order to break the degeneracy between η_B and a possible not standard expansion. In particular, since ²H, ³He and ⁷Li are most sensitive to η_B , ⁴He provides the best way to measure departure from the standard expansion rate.

Brane cosmology and BBN

A mean to reconcile the mismatch between the PP and G scales: the 4-dim standard space (where ordinary matter is confined) is a submanifold embedded in a higher-dimensional spacetime, and the extra dimensions are compactified. A variation with a non-compactified extra dimension was proposed by RS: the ordinary space (the brane) is embedded in a 5-dim AdS space, where gravity propagates (the bulk).

These type of models give two additional terms in the Friedmann equation

$$\Delta(H^2) = \frac{\rho^2}{36 M_5^6} + \frac{C}{a^4}$$

5-dim Planck mass

"Dark radiation". The coefficient C can be either > or < o

For C=o, one gets a slower expansion rate than the standard one, a ~ $t^{1/(3+3w)}$ instead of a ~ $t^{2/(3+3w)}$. We put the classical constraint Γ ~ H.

$$\left(\frac{n}{p}\right)_{T_{BBN}} = \exp\left[-\frac{Q}{7.5MeV}\left(\frac{M_5}{TeV}\right)^3\right]e^{-\frac{\Delta t}{\tau_n}}$$

M₅ ~ 8 TeV and a too large compactification radius

How much of dark?

On the other side, for large M5, the dark radiation parameter C can be constrained by N_{eff} :

K. Ichiki, M. Yahiro, T. Kajino, M. Orito, G.J. Matthews, Phys. Rev. D 66 (2002) 043521

o% (blue), +10.5% (red), -41% (green) dark radiation

$$C = \frac{8\pi G_N}{3} \Delta N_{eff} \rho_{v0} a^4$$

J.D. Bratt, A.C. Gault, R.J. Sherrer, T.P. Walker, Phys. Lett. B 546 (2002) 19

 $-1.23 \le \rho_{DR} / \rho_{\gamma} \le 0.11$

A small value of M5 (ρ^2 term not negligible) can be compensated by a large and negative C (ΔN_{eff}): one can derive a degeneracy of the form $a/M_5^6+\Delta N_{eff}$ =const. The band becomes the standard constraint on ΔN_{eff} for large M_5 .

Ofelia Pisanti - Alternative Gravity and Alternative Matter Workshop, Heraklion, 20-23 May 2015

25

Bulk neutrinos

Neutrino masses through the seesaw mechanism require a scale 10¹¹-10¹² GeV, much larger than the extra dimension scale. Solutions have been proposed based on SMsinglet neutrinos in the bulk coupled with lepton doublet on the brane via Yukawa couplings. The resulting infinite tower of sterile neutrinos mixes with active ones, thus contributing to the total radiation content parameterized by N_{eff} and giving observable results on BBN prediction.

> K.N. Abazajian, G.M. Fuller, M. Patel, Phys. Rev. Lett. 90 (2003) 061301

R is the radius of the largest extra dimension, μ_i the mass of a light Dirac neutrino.

Variation of fundamental constants

The fundamental constants of physics may be indeed variable parameters characterizing the particular state of the universe (Dirac, 1937). For example, theories with extra dimensions such as Kaluza Klein or string theories, naturally predict that 4-dim constants may vary (in time and space), since they represent effective values in the low energy limit, and are sensitive to the size and structures of extra dimensions.

• Lot of physical constants entering the BBN physics: too many free parameters result in a lack of predictive power.

• No unique theoretical framework for an unambiguous determination of their evolution.

• Due to dependence on system of units and measurement technique, only meaningful to consider dimensionless quantities, given by the ratio between two independent and homogeneous constants, like $\Lambda_{\rm QCD}/m_q$.

Two typical strategies:

- n only one or a few free fundamental constants to be fixed in the analysis
- 2. a specific theoretical model (for example GUTs) which gives constraints among constants, so reducing the free ones

Varying G_N

A variation of G_N has an effect on $H \propto \sqrt{G_N}$, changing n/p ratio and the efficiency of ²H burning. This is seen, as usual, as a change in N_{eff} .

$$H^{2} = \frac{8\pi G_{N}}{3}\rho$$
$$\rho_{0} = \frac{\pi^{2}}{30} \left(2 + \frac{7}{8}4 + \frac{7}{8}2N_{eff}\right)T$$

$$\delta G_N \rho_0 = G_N \delta \rho_{N_{eff}}$$
$$\frac{\delta G_N}{G_N} = \frac{7/4 \,\Delta N_{eff}}{g_*} = \frac{7}{43} \Delta N_{eff}$$

• An effective G_N is possible in scalar-tensor theories of gravity

- For scalar-tensor theories of gravity, BBN constraints depend strongly on the details of the model
- Particular choices of the scalar field potential could solve the lithium problem, yet leading to values of the deuterium and helium abundances compatible with experimental data

Astrophys. J. 658 (2007) 1

akhon, 20 23 may 2

 $V(\phi) = \Lambda^2 \phi^4$ and a is a parameter in the Einstein action

Ofelia Pisanti - Alternative 🥌

Varying G_N

A variation of G_N has an effect on $H \propto \sqrt{G_N}$, changing n/p ratio and the efficiency of ²H burning. This is seen, as usual, as a change in N_{eff}.

$$H^{2} = \frac{8\pi G_{N}}{3}\rho$$
$$\rho_{0} = \frac{\pi^{2}}{30} \left(2 + \frac{7}{8}4 + \frac{7}{8}2N_{eff}\right)T^{4}$$

$$\frac{\delta G_N \rho_0 = G_N \delta \rho_{N_{eff}}}{G_N} = \frac{7/4 \Delta N_{eff}}{g_*} = \frac{7}{43} \Delta N_{eff}$$

• An effective G_N is possible in scalar-tensor theories of gravity

Varying Λ

The observed accelerated expansion of the universe can be explained by a cosmological constant. But there are "old" problems:

• the value of Λ is extremely small with respect to expectations

A Dhug Dom

• (just) today Ω_{M} and Ω_{Λ} are ~ equal

Attempts for alleviating these problems are based on the idea of a dynamically changing Ω_{Λ} due to a scalar field Q (quintessence, k-ess cases, one has attractor-like solutions of the field equations of the field equations).

If the energy density of Q is nonnegligible during the radiation dominated period, these models can be constrained by BBN.

$$\Omega_{Q}\Big|_{T_{D}} \leq \left(\frac{\delta\rho_{N_{eff}}}{\rho}\right)_{T_{D}} = \frac{7/4\,\Delta N_{eff}}{g_{*} + 7/4\,\Delta N_{eff}} \leq 0.09(2\sigma)$$

M. Yahiro, G.J. Mathews, K. Ichiki, T. Kajino, M. Orito, Phys. Rev. D 65 (2002) 063502

 $\rho_{\rm O}/\rho_{\rm B}$ = ratio between en. den.

31

Ofelia Pisanti - Alternative Gravity and Alternative Matter Workshop, Hei

Varying Λ

The observed accelerated expansion of the universe can be explained by a cosmological constant. But there are "old" problems:

- the value of Λ is extremely small with respect to expectations
- (just) today $\Omega_{\rm M}$ and Ω_{Λ} are ~ equal

Attempts for alleviating these problems are based on the idea of a dynamically changing Ω_{Λ} due to a scalar field Q (quintessence, k-essence, etc.): in particular cases, one has attractor-like solutions of the field equations (tracker solutions).

G. Leon, Y. Leyva, J. Socorro, Phys. Lett. B 732 (2014) 285 If the energy density of Q is nonnegligible during the radiation Ω_m dominated period, these models P_{12}^{1} A canonical can be constrained by BBN. quintessence 0.75 NAPhysRep scalar field and a $\Omega_{\varrho}\Big|_{T_{D}} \leq \left(\frac{\delta\rho_{N_{eff}}}{\rho}\right)_{T} = \frac{7/4\Delta N_{eff}}{g_{*} + 7/4\Delta N_{eff}} \leq 0.09(2\sigma)$ phantom scalar 0.5 field. 0.25 But, we don't have BBN constraints if the universe is Ω_r dominated by a phantom field (quintom model). 0.25 0.5 0.75 Pg

Making the difference with e⁺e⁻

Example: a X particle that contributes to the energy density like a neutrino, $T_X=T_v$. Then, the contribution of this species to ρ_R is, after e^+e^- disappearance, diluted by the heating of the photons.

$$\rho_X^{before} = \frac{7}{8} \Delta N_{eff} \frac{\pi^2}{15} T_v^2 = \frac{7}{8} \Delta N_{eff} \rho_\gamma \quad \rho_X^{after} = \frac{7}{8} \Delta N_{eff} \frac{\pi^2}{15} T_v^2 = \frac{7}{8} \Delta N_{eff} \left(\frac{4}{11}\right)^{4/3} \rho_\gamma$$

Comparison of this scenario with two "similar" models: a non-minimally coupled quintessence and a nonminimal coupling of a scalar field with the Ricci scalar.

The usual solutions in these scenarios have the characteristic that Ω_Q is larger in RD (independently on e⁺e⁻). Isoabundance contours for ²H (vertical) and ⁴He (horizontal). J.P. Kneller, G. Steigman, Phys. Rev. D 67 (2003) 063501

Ofelia Pisanti - Alternative Gravity and Alternative Matter Workshop, Heraklion, 20-23 May 2015

33

Varying a lot...

Typical analyses assume that all but a single constant are held fixed. But it is quite natural that several couplings or fundamental scales would be timedependent. Then, when using BBN to constrain such a scenario several degeneracies emerge.

- Identify the fundamental parameters which influence BBN
- Use a perturbative approach, in the neighborhood of their standard values
- Construct the response matrix R

$$R_{ik} = \frac{\varphi_k}{X_i} \frac{\partial X_i}{\partial \varphi_k}$$

- Construct the χ^2 function by using the experimental data
- Notice the strong correlation of G_N with α_{em} , m_e and ν (Higgs vacuum expectation value).

Ofelia Pisanti - Alternative Gravity and Alternative Matter Workshop, Heraklion, 20-23 May 2015

NAPhysRep

Tests of gravity on all scales

A classification of astrophysical and cosmological systems in a "gravitational" parameter space. Two gravitational quantifiers: the Kretschmann scalar and the Newtonian gravitational potential. BBN is concerned only with the first one, since it is not possible to assign a ε scale to an unperturbed background.

$$\boldsymbol{\xi} = \left(\boldsymbol{R}^{\alpha\beta\gamma\delta}\boldsymbol{R}_{\alpha\beta\gamma\delta}\right)^{1/2}$$

T. Baker, D. Psaltis, C. Skordis, Astrophys. J. 802 (2015) 63

In particular, for cosmology one distinguishes between a piece coming from cosmological perturbations and a background contribution, ξ^{cosmo} .

$$\xi^{\cos mo} = \frac{\sqrt{12}}{a^2} \left(\dot{H}^2 + H^4 \right)^{1/2}$$

Systems that are usually considered complementary in testing relativity can be probing the same set of potentials and curvature.

Conclusions

- BBN theory quite accurate, at % level (or better)
- Nuclear physics dominates the error budget in ²H BBN prediction → strong motivation for future measurements of reaction rates.
- More high quality data on ⁴He → decreasing uncertainty on Y_p and improved systematics
- ⁷Li still puzzling

New updates from Planck → increased accuracy in the BBN+CMB analyses

• "Alternative" scenarios are probed by BBN mainly through the speed of expansion (new particles, a change in the value of G_N , ...) \rightarrow variation in N_{eff} . Conclusion: if your "alternative" model does not change the expansion at the BBN time it is almost safe.

• A different view of what is complementary in testing gravity: in any case, BBN is there!

"Alternative Gravity and Alternative Matter" Workshop

ITCP - Department of Physics Heraklion, Crete 20-23 May 2015 Thank you!

